martes, 10 de marzo de 2015

La naturaleza eléctrica de la materia


Muchos fenómenos muestran la relación entre la constitución de la materia y la electricidad:

  • Algunos cuerpos al ser frotados adquieren carga eléctrica.
  • La corriente eléctrica descompone algunas sustancias en otras más simples (electrólisis).

A partir de estas evidencias se empezó a estudiar la naturaleza eléctrica de la materia. La primera partícula que se descubrió fue el electrón. En 1897, el físico J. J. Thomson (1856-1940) demostró con experiencias basadas en tubos de vidrio y grandes descargas eléctricas, la emisión de partículas cargadas negativamente. A los constituyentes de estas partículas se les denominó electrones.

Esta partícula, de masa tan pequeña que se considera despreciable y carga eléctrica negativa, permitió explicar el comportamiento eléctrico de la materia que, curiosamente, ya habían postulado los griegos dos mil años antes.

Por tanto, había que revisar el modelo de átomo indivisible de Dalton. Si el átomo no era indivisible: ¿cómo era «por dentro»? Si el átomo era eléctricamente neutro y en su interior había cargas negativas, tendría que haber también cargas positivas para neutralizarlas.

Así, en 1911, Ernest Rutherford (1871-1937) descubrió la partícula positiva constituyente de la materia. Se la llamó protón. Su masa era dos mil veces la del electrón y tenía exactamente la misma carga, pero de signo positivo.

Podemos concluir que: la materia está constituida por átomos. A su vez, los átomos están formados por electrones y protones. Además, en igual cantidad, para que el átomo sea neutro.

Ahora bien, dado que los electrones tienen masa despreciable, solo con los protones no se consigue toda la masa atómica. ¿De dónde procede, por tanto, el resto de la masa del átomo? Se hace necesaria la existencia de otra partícula subatómica. En 1932, Chadwick descubrió el neutrón, una partícula con masa apreciable y sin carga eléctrica.
HISTORIA DE LA QUÍMICA

La historia de la química está íntensamente unida al desarrollo del hombre ya que embarca desde todas las transformaciones de materias y las teorías correspondientes. A menudo la historia de la química se relaciona íntimamente con la historia de los químicos y - según la nacionalidad o tendencia política del autor - resalta en mayor o menor medida los logros hechos en un determinado campo o por una determinada nación.
La ciencia química surge en el siglo XVII a partir de los estudios de alquimia populares entre muchos de los científicos de la época. Se considera que los principios básicos de la química se recogen por primera vez en la obra del científico británicoRobert Boyle: The Skeptical Chymist (1661). La química como tal comienza sus andares un siglo más tarde con los trabajos del francés Antoine Lavoisier y sus descubrimientos del oxígeno, la ley de conservación de masa y la refutación de la teoría del flogisto como teoría de la combustión.

 PRIMEROS AVANCES

El principio del dominio de la química (que para unos antropólogos coincide con el principio del hombre moderno) es el dominio del fuego. Hay indicios que hace más de 500.000 años en tiempos del Homo erectus algunas tríbus consiguieron este logro que aún hoy es una de las tecnologías más importantes. No sólo daba luz y calor en la noche y ayudaba a protegerse contra los animales salvajes. También permitía la preparación de comida cocida. Esta contenía menos microorganismos patógenos y era más fácilmente digerida. Así bajaba la mortalidad y se mejoraban las condiciones generales de vida.
El fuego también permitía conservar mejor la comida y especialmente la carne y el pescado secándolo y ahumándolo.
Desde este momento hubo unas relación intensa entre las cocinas y los primeros laboratorios químicos hasta el punto que la pólvora negra fue descubierta por unos cocineros chinos.
Finalmente era imprescindible para el futuro desarrollo de la metalurgia, la cerámica y el vidrio y la mayoría de los procesos químicos.

 LA QUIMICA COMO CIENCIA

El filósofo griego Aristóteles pensaba que las sustancias estaba formada por cuatros elementos: tierra, aire, agua y fuego. Paralelamente discurría otra corriente paralela, el atomismo, que postulaba que la materia estaba formada de átomos, partículas indivisibles que se podían considerar la unidad mínima de materia. Esta teoría, propuesta por el filósofo griego Demócrito de Abdera no fue popular en la cultura occidental dado el peso de las obras de Aristóteles en Europa. Sin embargo tenía seguidores (entre ellos Lucrecio) y la idea se quedó presente hasta el principio de la edad moderna.
Entre los siglos III a.C. y el siglo XVI d.C la química estaba dominada por la alquimia. El objetivo de investigación más conocido de la alquimia era la búsqueda de la piedra filosofal, un método hipotético capaz de transformar los metales en oro. En la investigación alquímica se desarrollaron nuevos productos químicos y métodos para la separación de elementos químicos. De este modo se fueron asentando los pilares básicos para el desarrollo de una futura química experimental.
La química como tal comienza a desarrollarse entre los siglos XVI y XVII. En esta época se estudió el comportamiento y propiedades de los gases estableciéndose técnicas de medición. Poco a poco fue desarrollándose y refinándose el concepto de elemento como una sustancia elemental que no podía descomponerse en otras. También esta época se desarrolló la teoría del flogisto para explicar los procesos de combustión.
A partir del siglo XVIII la química adquiere definitivamente las características de una ciencia experimental. Se desarrollan métodos de medición cuidadosos que permiten un mejor conocimiento de algunos fenómenos, como el de la combustión de la materia, descubriendo Lavoisier el oxígeno y sentando finalmente los pilares fundamentales de la moderna química.

 EL VITALISMO Y EL COMIENZO DE LA QUIMICA ORGANICA
 
Después de que se comprendieran los principios de la combustión otro debate de gran importancia se apoderó de la química. El vitalismo y la distinción esencial entre la materia orgánica e inorgánica. Esta teoría asumía que la materia orgánica sólo pudo ser producida por los seres vivos atribuyendo este hecho a una vis vitalis inherente en la propia vida. Base de esta asunción era la dificultad de obtener materia orgánica a partir de precursores inorgánicos.

Este debate fue revolucionado cuando Friedrich Wöhler descubrió accidentalmente como se podía sintetizar la urea a partir de cianato de amónio en 1828 mostrando que la materia orgánica podía crearse de manera química. Sin embargo aún hoy en día se mantiene la clasificación en química orgánica e inorgánica, ocupandose la primera esencialmente de los compuestos del carbono y la segunda de los compuestos de los demás elementos.
Los motores para el desarrollo de la química orgánica era en el principio la curiosidad sobre los productos presentes en los seres vivos (con probablemente la esperanza de encontrar nuevos fármacos) y la síntesis de los colorantes o tintes. La última surgió tras el descubrimiento de la anilina por Runge y la primara síntesis de un colorante artificial por Perkin.
Luego se añadieron los nuevos materiales como los plásticos, los adhesivos, los cristales líquidos, los fitosanitarios etc.
Hasta la segunda guerra mundial la principal materia prima de la industria química orgánica era el carbón dada la gran importancia de Europa en el desarrollo de esta parte de la ciencia y el hecho que el carbón en Europa no hay grandes yacimientos de alternativas como el pertóleo. Con el final de la segunda guerra mundial y el creciente peso de los estados unidos en el sector químico la química orgánica clásica se convierte cada vez más en la petroquímica que conocemos hoy en día. Una de las principales razones era la mayor facilidad de transformación y la gran varidad de productos de partida encontradas en el petróleo.

 LA TABLA PERIÓDICA

En 1860 los cientificos ya habian descubierto más de 60 elementos diferentes y habian determinado su masa atómica. Notaron que algunos elementos tenian propiedades químicas similares por lo cual le dieron un nombre a cada grupo de elementos parecidos. En 1829 el químico J.W. Döbenreiner organizó un sistema de clasificación de elementos en el que éstos se agrupaban en grupos de tres denominados triadas. La propiedades químicas de los elementos de una triada eran similares y sus propiedades físicas variaban de manera ordenada con su masa atómica.

Algo más tarde, el químico ruso Dmitri Ivanovich Mendeleyev desarrolló una tabla periódica de los elementos según el orden creciente de sus masas atómicas. Colocó lo elementos en columnas verticales empezando por los mas livianos, cuando llegaba a un elemento que tenia propiedades semejantes a las de otro elemento empezaba otra columna. Al poco tiempo Mendeleiev perfecciono su tabla acomodando los elementos en filas horizontales. Su sistema le permitió predecir con bastante exactitud las propiedades de eleemntos no descubiertos hasta el momento. El gran parecido del germanio con el elemento previsto por Mendeleyev conseguió finalmente la aceptación general de este sistema de ordenación que aún hoy se sigue aplicando.
 DESARROLLO DE LA TEORÍA ATÓMICA

A lo largo del siglo XIX la química estaba dividida entre los seguidores de la teoría atómica de John Dalton y aquellos que no como Wilhelm Ostwald y Ernst Mach. Los impulsores más decididos de la teoría atómica eran Amedeo Avogadro, Ludwig Boltzmann y otros que consiguieron grandes avances en la comprensión del comportamiento de los gases. La disputa fue finalizada con la explicación del efecto Browniano por Albert Einstein en 1905 y por los experimentos de Jean Perrin al respecto. Mucho antes de que la disputa hubiera sido resuelta muchos investigadores habían trabajado bajo la hipótesis atómica. Svante Arrhenius había investigado la estructura interna de los átomos proponiendo su teoría de la ionización. Su trabajo fue seguido por Ernest Rutherford quien abrió las puertas al desarrollo de los primeros modelos de átomos que desembocarían en el modelo atómico de Niels Bohr. En la actualidad el estudio de la estructura del átomo se considera una rama de la física y no de la química.

lunes, 9 de marzo de 2015

LAS FUNCIONES DE LOS SERES VIVOS:
4. La función de reproducción:
  Los individuos de cada especie para asegurar su supervivencia se deben reproducir, así pueden originar nuevos seres iguales a ellos que sustituyen a los que se mueren. Existen dos formas de reproducción: la reproducción sexual y la asexual.
  4.a. La reproducción asexual:
  En este tipo de reproducción sólo interviene un individuo y no existen células especializadas o gametos sexuales. Es muy rápida y produce gran cantidad de descendientes idénticos al progenitor ya que se originan a partir de una parte del mismo, por lo tanto su información genética es igual a la célula de la que parten. Puede realizarse por:
Gemación: En el organismo se produce una yema (conjunto de células) que crecen y se pueden desprender del organismo que lo produce y originar un individuo independiente.
Bipartición: La célula se divide en dos partes y cada una da un individuo.
Esporulación: la célula se divide varias veces y forman esporas todas iguales.
Fragmentación: se forman nuevos individuos a partir de trozos de organismos que ya existían.
Regeneración: El trozo que se desprende del organismo original lo hace de forma accidental (esquejes) y a partir de ahí se pueden formar nuevos seres vivos.


Esqueje


Actividad 28


  4.b. La reproducción sexual en animales:
  Los animales se reproducen sexualmente. Para ello cuentan con:
1º.- células sexuales o gametos que se producen en las gónadas. Estas células son los óvulos (femeninos) y los espermatozoides (masculinos). Suelen formarse en individuos diferentes (machos y hembras) aunque existen animales que pueden producir los dos tipos de gametos (hermafroditas).
2º.- La fecundación de los gametos produce una célula huevo o cigoto. Esta fecundación puede darse dentro de la madre (interna) o en el exterior (externa).
3º.- El desarrollo del cigoto se pude dar en el interior de la madre (vivíparos) o en el interior de un huevo (ovíparos).
4º.- El desarrollo del embrión puede ser: directo: del embrión sale un individuo similar a sus padres como en mamíferos, aves y reptiles o indirecto: del cigoto sale una larva que tras una metamorfosis llegará a ser adulto. (anfibios o mariposas).
5º.- Los individuos resultantes no son idénticos a sus padres puesto que tienen los caracteres mezclados entre ambos.






Actividad 29


  4.c. La reproducción en las plantas sin flores:
  En las plantas sin flores la reproducción es un ciclo con dos generaciones donde existe una fase sexual que forma gametos (gametofito) y una asexual que forma esporas (esporofito). Una vive siempre a expensas de la otra.




  En los musgos la fase dominante, la que vemos cuando vamos al campo, es la fase que forma los gametos (gametofito), la fase esporofito dura poco y se seca rápidamente.
En los helechos la fase dominante, lo que determina el vegetal, lo que observamos a simple vista es la fase esporofito, fase asexual formadora de esporas. La fase gametofito es una pequeña lámina de vida efímera subterránea.


Actividad 30
  4.d. Reproducción de las plantas con flores:
  El aparato reproductor de la mayoría de los vegetales terrestres es la flor. La flor consta de: sépalos, pétalos, estambres y carpelos.
1º.- En el interior de los granos de polen, producidos en las anteras de los estambres, se desarrolla el gameto masculino o anterozoide y en el interior de los carpelos se forma el gameto femenino u oosfera. Por lo tanto el gametofito de las plantas con flor se encuentra reducido a un pequeño grupo de células específicas.
2º.- El polen llega a la parte femenina de la flor por la polinización con el concurso de distintos agentes transportadores de polen (viento, insectos, aves...).
3º.- Una vez que el grano de polen llega a la parte femenina de la flor de otra planta diferente (generalmente) éste desarrolla un tubo polínico (con dos anterozoides) que se prolonga e introduce por el ovario hasta llegar al óvulo.
4º.- Se produce la fecundación: uno de los anterozoides se une a la oosfera formando el zigoto y el otro se une a otros dos núcleos del óvulo formando el tejido nutritivo que alimentará al embrión durante su desarrollo y vida dentro de la semilla.
5º.- El óvulo tras la fecundación se transforma en embrión con su estructura nutritiva que lo rodea. Las paredes del ovario se transforman, se hacen duras o carnosas y forman el fruto. Este fruto, con diversas formas de dispersión, suelta cuando está maduro las semillas que se diseminan por el viento, agua, insectos, aves.... y produce de nuevo una planta adulta.




Actividad 31
Actividad 32


  El conjunto de envoltura, embrión y alimento es la semilla. Cuando ésta cae en un medio adecuado, con las condiciones ambientales adecuadas, la semilla germina y da una nueva planta.
En las gimnospermas el óvulo no está encerrado en un ovario y por lo tanto tras la fecundación no existe transformación del ovario en fruto. Por lo tanto las gimnospermas son vegetales sin fruto. Las semillas están libres sobre las brácteas de la flor (piña).
En las angiospermas sí existe ovario donde se encuentra el óvulo. Tras la fecundación sí se produce el fruto con las semillas dentro.




Actividad 33


  La reproducción sexual general individuos únicos e irrepetibles puesto que une dos células distintas, espermatozoides y óvulos, de progenitores diferentes ocasionando un individuo nuevo con caracteres mixtos entre ambos. Esto asegura la diversidad dentro de la especie. Así pueden estar preparados para una mejor adaptación ante un posible cambio o modificación del medio en que viven.

MITOSIS Y MEIOSIS

Mitosis
Las células se reproducen duplicando su contenido y luego dividiéndose en dos. El ciclo de división es el medio fundamental a través del cual todos los seres vivos se propagan. En especies unicelulares como las bacterias y las levaduras, cada división de la célula produce un nuevo organismo. Es especies pluricelulares se requieren muchas secuencias de divisiones celulares para crear un nuevo individuo; la división celular también es necesaria en el cuerpo adulto para reemplazar las células perdidas por desgaste, deterioro o por muerte celular programada. Así, un humano adulto debe producir muchos millones de nuevas células cada segundo simplemente para mantener el estado de equilibrio y, si la división celular se detiene el individuo moriría en pocos días.
El ciclo celular comprende el conjunto de procesos que una célula debe de llevar a cabo para cumplir la replicación exacta del DNA y la segregación de los cromosomas replicados en dos células distintas. La gran mayoría de las células también doblan su masa y duplican todos sus orgánulos citoplasmáticos en cada ciclo celular: De este modo durante el ciclo celular un conjunto complejo de procesos citoplasmáticos y nucleares tienen que coordinarse unos con otros.
Las plantas y los animales están formados por miles de millones de células individuales organizadas en tejidos y órganos que cumplen funciones específicas. Todas las células de cualquier planta o animal han surgido a partir de una única célula inicial —el óvulo fecundado— por un proceso de división. La mitosis es la división nuclear asociada a la división de las células somáticas – células de un organismo eucariótico que no van a convertirse en células sexuales. Una célula mitótica se divide y forma dos células hijas idénticas, cada una de las cuales contiene un juego de cromosomas idéntico al de la célula parental. Después cada una de las células hijas vuelve a dividirse de nuevo, y así continúa el proceso. Salvo en la primera división celular, todas las células crecen hasta alcanzar un tamaño aproximado al doble del inicial antes de dividirse. En este proceso se duplica el número de cromosomas (es decir, el ADN) y cada uno de los juegos duplicados se desplaza sobre una matriz de microtúbulos hacia un polo de la célula en división, y constituirá la dotación cromosómica de cada una de las dos células hijas que se forman.
Durante la mitosis existen cuatro fases:
  • Profase: Un huso cromático empieza a formarse fuera del núcleo celular, mientras los cromosomas se condensan. Se rompe la envoltura celular y los microtúbulos del huso capturan los cromosomas. 
  • Metafase: Los cromosomas se alinean en un punto medio formando una placa metafásica. 
  • Anafase: Las cromátidas hermanas se separan bruscamente y son conducidas a los polos opuestos del huso, mientras que el alargamiento del huso aumenta más la separación de los polos. 
  • Telofase: El huso continúa alargándose mientras los cromosomas van llegando a los polos y se liberan de los microtúbulos del huso; posteriormente la membrana se comienza a adelgazar por el centro y finalmente se rompe. Después de esto, en torno a los cromosomas se reconstruye la envoltura nuclear. 
ProfaseEl comienzo de la mitosis se reconoce por la aparición de cromosomas como formas distinguibles, conforme se hacen visibles los cromosomas adoptan una apariencia de doble filamento denominada cromátidas, estas se mantienen juntas en una región llamada centrómero, y es en este momento cuando desaparecen los nucleolos. La membrana nuclear empieza a fragmentarse y el nucleoplasma y el citoplasma se hacen uno solo. En esta fase puede aparecer el huso cromático y tomar los cromosomas.
MetafaseEn esta fase los cromosomas se desplazan al plano ecuatorial de la célula, y cada uno de ellos se fija por el centrómero a las fibras del huso nuclear.
AnafaseEsta fase comienza con la separación de las dos cromátidas hermanas moviéndose cada una a un polo de la célula. El proceso de separación comienza en el centrómero que parece haberse dividido igualmente.
TelofaseAhora, los cromosomas se desenrollan y reaparecen los nucleolos, lo cual significa la regeneración de núcleos interfásicos. Para entonces el huso se ha dispersado, y una nueva membrana ha dividido el citoplasma en dos.


REPRODUCCIÓN CELULAR

REPRODUCCION CELULAR

La reproducción celular es el proceso por el cual a partir de una célula inicial o célula madre se originan nuevas células llamadas células hijas.

      Durante los procesos de reproducción celular, las moléculas de ADN se condensar y forman los cromosomas. Los cromosomas son estructuras con forma de bastoncillos que presentan una estrangulación o centrómero que los divide en dos sectores o brazos. 

Hay tres tipos de cromosomas: acrocéntrico, submetacéntrico y metacéntrico.